On isomorphisms of connected Cayley graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomorphisms of Cayley graphs on nilpotent groups

Let S be a finite generating set of a torsion-free, nilpotent group G. We show that every automorphism of the Cayley graph Cay(G;S) is affine. (That is, every automorphism of the graph is obtained by composing a group automorphism with multiplication by an element of the group.) More generally, we show that if Cay(G1;S1) and Cay(G2;S2) are connected Cayley graphs of finite valency on two nilpot...

متن کامل

On Isomorphisms of Finite Cayley Graphs

A Cayley graph Cay(G, S) of a group G is called a CI-graph if whenever T is another subset of G for which Cay(G, S) ∼= Cay(G, T ), there exists an automorphism σ of G such that Sσ = T . For a positive integer m, the group G is said to have the m-CI property if all Cayley graphs of G of valency m are CI-graphs; further, if G has the k-CI property for all k ≤ m, then G is called an m-CI-group, an...

متن کامل

Hamilton-Connected Cayley Graphs on Hamiltonian Groups

We refer to the preceding theorem as the Chen–Quimpo theorem throughout the paper. Are there other families of groups which admit analogues of the Chen–Quimpo theorem? A natural direction in which to look is towards groups that are, in some sense, ‘almost’ abelian. The dihedral groups have been investigated [2]. Another family of groups, and the subject of this paper, is the family of Hamiltoni...

متن کامل

On the distance eigenvalues of Cayley graphs

In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(97)81821-3